Penalized logistic regression for high-dimensional DNA methylation data with case-control studies
نویسندگان
چکیده
MOTIVATION DNA methylation is a molecular modification of DNA that plays crucial roles in regulation of gene expression. Particularly, CpG rich regions are frequently hypermethylated in cancer tissues, but not methylated in normal tissues. However, there are not many methodological literatures of case-control association studies for high-dimensional DNA methylation data, compared with those of microarray gene expression. One key feature of DNA methylation data is a grouped structure among CpG sites from a gene that are possibly highly correlated. In this article, we proposed a penalized logistic regression model for correlated DNA methylation CpG sites within genes from high-dimensional array data. Our regularization procedure is based on a combination of the l(1) penalty and squared l(2) penalty on degree-scaled differences of coefficients of CpG sites within one gene, so it induces both sparsity and smoothness with respect to the correlated regression coefficients. We combined the penalized procedure with a stability selection procedure such that a selection probability of each regression coefficient was provided which helps us make a stable and confident selection of methylation CpG sites that are possibly truly associated with the outcome. RESULTS Using simulation studies we demonstrated that the proposed procedure outperforms existing main-stream regularization methods such as lasso and elastic-net when data is correlated within a group. We also applied our method to identify important CpG sites and corresponding genes for ovarian cancer from over 20 000 CpGs generated from Illumina Infinium HumanMethylation27K Beadchip. Some genes identified are potentially associated with cancers.
منابع مشابه
Comparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملPenalized Estimators in Cox Regression Model
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...
متن کاملPenalized Lasso Methods in Health Data: application to trauma and influenza data of Kerman
Background: Two main issues that challenge model building are number of Events Per Variable and multicollinearity among exploratory variables. Our aim is to review statistical methods that tackle these issues with emphasize on penalized Lasso regression model. The present study aimed to explain problems of traditional regressions due to small sample size and m...
متن کاملApplying Penalized Binary Logistic Regression with Correlation Based Elastic Net for Variables Selection
Reduction of the high dimensional classification using penalized logistic regression is one of the challenges in applying binary logistic regression. The applied penalized method, correlation based elastic penalty (CBEP), was used to overcome the limitation of LASSO and elastic net in variable selection when there are perfect correlation among explanatory variables. The performance of the CBEP ...
متن کاملA convenient method to generate methylated and un-methylated control DNA in methylation studies
Methylated and un-methylated control DNA is an important part of DNA methylation studies. Although human and mouse DNA methylation control sets are commercially available, in case of methylation studies on other species such as animals, plants, and bacteria, control sets need to be prepared. In this paper a simple method of generating methylated and un-methylated control DNA is described. Whole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 28 10 شماره
صفحات -
تاریخ انتشار 2012